Prompt Engineering for Developers: Leveraging AI as Your Coding Assistant

Gartner predicts “By 2027, 50% of developers will use ML-powered coding tools, up from less than 5% today”

In the age of AI, developers have an invaluable tool to enhance productivity: prompt engineering. This is the art and science of crafting effective inputs (prompts) for AI models, enabling them to understand, process, and deliver high-quality outputs. By leveraging prompt engineering, developers can guide AI to assist with coding, from generating modules to optimizing code structures, creating a whole new dynamic for AI-assisted development.

What is Prompt Engineering?

Prompt engineering involves designing specific, concise instructions to communicate clearly with an AI, like OpenAI’s GPT. By carefully wording prompts, developers can guide AI to produce responses that meet their goals, from completing code snippets to debugging.

Why is Prompt Engineering Important for Developers?

For developers, prompt engineering can mean the difference between an AI providing useful assistance or producing vague or off-target responses. With the right prompts, developers can get AI to help in tasks like:

  • Generating boilerplate code
  • Writing documentation
  • Translating code from one language to another
  • Offering suggestions for optimization

How Developers Can Leverage Prompt Engineering for Coding

  1. Code Generation
    Developers can use prompt engineering to generate entire code modules or functions by providing detailed prompts. For example:
    • Prompt: “Generate a Python function that reads a CSV file and calculates the average of a specified column.”
  2. Debugging Assistance
    AI models can identify bugs or inefficiencies. A well-crafted prompt describing an error or issue can help the AI provide pinpointed debugging tips.
    • Prompt: “Review this JavaScript function and identify any syntax errors or inefficiencies.”
  3. Code Optimization
    AI can suggest alternative coding approaches that might improve performance.
    • Prompt: “Suggest performance optimizations for this SQL query that selects records from a large dataset.”
  4. Documentation and Explanations
    Developers can create prompts that generate explanations or documentation for their code, aiding understanding and collaboration.
    • Prompt: “Explain what this Python function does and provide inline comments for each step.”
  5. Testing and Validation
    AI can help generate test cases by understanding the function’s purpose through prompts.
    • Prompt: “Create test cases for this function that checks for valid email addresses.”
  6. Learning New Frameworks or Languages
    Developers can use prompts to ask AI for learning resources, tutorials, or beginner-level code snippets for new programming languages or frameworks.
    • Prompt: “Explain the basics of using the Databricks framework for data analysis in Python.”

Advanced Prompt Engineering Techniques

1. Chain of Thought Prompting

Guide the AI through the development process:

Let's develop a caching system step by step:
1. First, explain the caching strategy you'll use and why
2. Then, outline the main classes/interfaces needed
3. Next, implement the core caching logic
4. Finally, add monitoring and error handling

2. Few-Shot Learning

Provide examples of desired output:

Generate a Python logging decorator following these examples:

Example 1:
@log_execution_time
def process_data(): ...

Example 2:
@log_errors(logger=custom_logger)
def api_call(): ...


Now create a new decorator that combines both features

3. Role-Based Prompting

Act as a security expert reviewing this authentication code:
[paste code]
Identify potential vulnerabilities and suggest improvements

Key Considerations for Effective Prompt Engineering

To maximize AI’s effectiveness as a coding assistant, developers should:

  • Be Clear and Concise: The more specific a prompt is, the more accurate the response.
  • Iterate on Prompts: Experiment with different phrasings to improve the AI’s response quality.
  • Leverage Context: Provide context when necessary. E.g., “In a web development project, write a function…”

Conclusion

Prompt engineering offers developers a powerful way to work alongside AI as a coding assistant. By mastering the art of crafting precise prompts, developers can unlock new levels of productivity, streamline coding tasks, and tackle complex challenges. As AI’s capabilities continue to grow, so too will the potential for prompt engineering to reshape the way developers build and maintain software.

Key Trends in Data Engineering for 2025

As we approach 2025, the field of data engineering continues to evolve rapidly. Organizations are increasingly recognizing the critical role that effective data management and utilization play in driving business success.

In my professional experiences, I have observed ~60% of Data & Analytics services for enterprises revolve around Data Engineering workloads, and the rest on Business Intelligence (BI), AI/ML, and Support Ops.

Here are the key trends that are shaping the future of data engineering:

1. Data Modernization

The push for data modernization remains a top priority for organizations looking to stay competitive. This involves:

  • Migrating from legacy systems to cloud-based platforms like Snowflake, Databricks, AWS, Azure, GCP.
  • Adopting real-time data processing capabilities. Technologies like Apache Kafka, Apache Flink, and Spark Structured Streaming are essential to handle streaming data from various sources, delivering up-to-the-second insights
  • Data Lakehouses – Hybrid data platforms combining the best of data warehouses and data lakes will gain popularity, offering a unified approach to data management
  • Serverless computing will become more prevalent, enabling organizations to focus on data processing without managing infrastructure. Ex: AWS Lambda and Google Cloud Functions

We’ll see more companies adopting their modernization journeys, enabling them to be more agile and responsive to changing business needs.

2. Data Observability

As data ecosystems grow more complex, the importance of data observability cannot be overstated. This trend focuses on:

  • Monitoring data quality and reliability in real-time
  • Detecting and resolving data issues proactively
  • Providing end-to-end visibility into data pipelines

Tools like Monte Carlo and Datadog will become mainstream, offering real-time insights into issues like data drift, schema changes, or pipeline failures.

3. Data Governance

With increasing regulatory pressures and the need for trusted data, robust data governance will be crucial. Key aspects include:

  • Implementing comprehensive data cataloging and metadata management
  • Enforcing data privacy and security measures
  • Establishing clear data ownership and stewardship roles

Solutions like Collibra and Alation help enterprises manage compliance, data quality, and data lineage, ensuring that data remains secure and accessible to the right stakeholders.

4. Data Democratization

The trend towards making data accessible to non-technical users will continue to gain momentum. This involves:

  • Developing user-friendly self-service analytics platforms
  • Providing better data literacy training across organizations
  • Creating intuitive data visualization tools

As a result, we’ll see more employees across various departments becoming empowered to make data-driven decisions.

5. FinOps (Cloud Cost Management)

As cloud adoption increases, so does the need for effective cost management. FinOps will become an essential practice, focusing on:

  • Optimizing cloud resource allocation
  • Implementing cost-aware data processing strategies
  • Balancing performance needs with budget constraints

Expect to see more advanced FinOps tools that can provide predictive cost analysis and automated optimization recommendations.

6. Generative AI in Data Engineering

The impact of generative AI on data engineering will be significant in 2025. Key applications include:

  • Automating data pipeline creation and optimization
  • Generating synthetic data for testing and development
  • Enriching existing datasets with AI-generated data to improve model performance
  • Assisting in data cleansing and transformation tasks

Tools like GPT and BERT will assist in speeding up data preparation, reducing manual intervention. We’ll likely see more integration of GenAI capabilities into existing data engineering tools and platforms.

7. DataOps and MLOps Convergence

The lines between DataOps and MLOps will continue to blur, leading to more integrated approaches:

  • Streamlining the entire data-to-model lifecycle
  • Implementing continuous integration and deployment for both data pipelines and ML models
  • Enhancing collaboration between data engineers, data scientists, and ML engineers

This convergence will result in faster time-to-value for data and AI initiatives.

8. Edge Computing and IoT Data Processing

With the proliferation of IoT devices, edge computing will play a crucial role in data engineering:

  • Processing data closer to the source to reduce latency
  • Implementing edge analytics for real-time decision making, with tools like AWS Greengrass and Azure IoT Edge leading the way
  • Developing efficient data synchronization between edge and cloud

Edge computing reduces latency and bandwidth use, enabling real-time analytics and decision-making in industries like manufacturing, healthcare, and autonomous vehicles.

9. Data Mesh Architecture

The data mesh approach will gain more traction as organizations seek to decentralize data ownership:

  • Treating data as a product with clear ownership and quality standards
  • Implementing domain-oriented data architectures
  • Providing self-serve data infrastructure

This paradigm shift will help larger organizations scale their data initiatives more effectively.

10. Low-Code/No-Code

Low-code and no-code platforms are simplifying data engineering, allowing even non-experts to build and maintain data pipelines. Tools like Airbyte and Fivetran will empower more people to create data workflows with minimal coding.

It broadens access to data engineering, allowing more teams to build data solutions without deep technical expertise.

Conclusion

As we look towards 2025, these trends highlight the ongoing evolution of data engineering. The focus is clearly on creating more agile, efficient, and democratized data ecosystems that can drive real business value. Data engineers will need to continually update their skills and embrace new technologies to stay ahead in this rapidly changing field. Organizations that successfully adapt to these trends will be well-positioned to thrive in the data-driven future that lies ahead.

OpenAI’s Path to Artificial General Intelligence (AGI)

OpenAI, a leading artificial intelligence research laboratory, has outlined a five-level framework to measure progress towards achieving Artificial General Intelligence (AGI). This framework provides a structured approach to understanding the complexities and potential implications of AI development.

Level 1: Conversational AI – chatbots with conversational language

  • Focus: Developing AI systems capable of engaging in natural and informative conversations.
  • Example: ChatGPT, Google Bard
  • Benefits: Revolutionize customer service, education, and mental health support. Improve accessibility to information and facilitate human-computer interaction.

Level 2: Reasoners – human-level problem solving

  • Focus: Creating AI systems that can solve complex problems, requiring reasoning, planning, and learning.
  • Example: AI systems capable of drafting legal documents, conducting scientific research, or developing complex software.
  • Benefits: Accelerate scientific discovery, increase efficiency in various fields like medicine and engineering.

Level 3: Autonomous Agents – systems that can take actions independently

  • Focus: Building AI systems capable of operating independently in complex environments, making decisions, and taking actions.
  • Example: Self-driving cars, robots capable of performing household tasks, or AI systems managing complex infrastructure.
  • Benefits: Transform transportation, improve quality of life, and enhance efficiency in industries like manufacturing and logistics.

Level 4: Innovators – AI that can aid in invention

  • Focus: Developing AI systems capable of generating new ideas and solutions, demonstrating creativity and adaptability.
  • Example: AI systems designing new drugs, creating innovative products, or composing music.
  • Benefits: Drive economic growth, foster innovation, and potentially lead to breakthroughs in fields like art, science, and technology.

Level 5: Organizational Equivalents – AI that can do the work of an organization

  • Focus: Creating AI systems capable of operating as entire organizations, making strategic decisions, and adapting to changing environments.
  • Example: AI systems managing complex businesses, governments, or non-profit organizations.
  • Benefits: Revolutionize governance, economic systems, and societal structures. However, also raises significant ethical and societal challenges.

According to Bloomberg, OpenAI believes its technology is approaching the second level of five on the path to artificial general intelligence. It’s important to note that this framework is a conceptual roadmap and the exact boundaries between levels may be fluid. Additionally, achieving each level represents a significant technological leap and will likely require substantial advancements in hardware, algorithms, and data.

While the potential benefits of AGI are immense, it’s crucial to address the associated challenges and risks, such as job displacement, bias, and the potential for misuse. OpenAI and other leading AI research organizations are actively working on developing safety protocols and ethical guidelines to ensure that AGI benefits humanity as a whole.

References:

https://www.bloomberg.com/news/articles/2024-07-11/openai-sets-levels-to-track-progress-toward-superintelligent-ai?embedded-checkout=true&sref=HrWXCALa

https://www.forbes.com/sites/jodiecook/2024/07/16/openais-5-levels-of-super-ai-agi-to-outperform-human-capability

Guess which industry tops the AI maturity index

Hey there! I came across this article from Accenture Research capturing the AI maturity index across various industries in 2021 and 2024 (estimated).

It’s quite obvious that Tech industry steals the AI show here! The range of companies – Google, Meta, Amazon, Apple, Microsoft etc., are striving hard to innovate and compete to gain the market space when it comes to AI-led products and solutions.

Automotive bags the number two spot thanks to AI-led self-driving / autonomous vehicles trend. Followed by Aerospace and Defence for AI-enabled remote systems. Life Sciences companies conduct experiments to reduce the drug development time using AI.

Accenture Research reveals that there are enormous opportunities for companies to seize in this space.

One thing that I particularly find it surprising is, Banking & Insurance industry which show relatively lower AI maturity compared to other industries. In general, BFSI as a sector, undertakes IT and Data or AI-led projects in-house (global capability centers) or using outsourced partners. BFSI has lot of room for AI penetration across their functions such as Customer Experience, Sales & Marketing, Finance & Investments.

Common challenges plaguing the AI adoption indicated in the research are

  • Legal and regulatory challenges
  • Inadequate AI infrastructure
  • Shortage of AI-trained workers

Analytics Industry Study – India – May 2021

You may be an experienced employee in the analytics space or an aspiring Data Scientist/Engineer or an Executive looking up to channelize your investments by creating business use-cases. Technologies like Data/Business analytics, AI/ML/DL, Data Engineering have been thriving in the market in terms of creating better career opportunities, aiding in bringing better customer experiences to your products/services.

According to Allied Market Research firm, the Global Big Data and Business Analytics market size was valued at $193.14 billion in 2019, and is projected to reach $420.98 billion by 2027, growing at a CAGR of 10.9% from 2020 to 2027. It’s promising to see the growth in this industry given that many client organizations are in the process of pivoting to Digital and undergoing a massive digital transformation exercises. This would only attribute to creating more business opportunities that could be uncovered by huge volumes of data using analytics.

In India, according to a recent 2021 study conducted by Analytics India Magazine, the market size of analytics industry in India is about $45.4 billion which has registered a growth of 26.5% YoY (last year, it was $35.9 billion).

There are a few insights I learnt from their study that I would like to share with you today –

  • Indian analytics industry to grow to a market size of $98 billion by 2025 and $118.7 billion by 2026
  • Analytics accounts for 23.4% in the Indian IT/ITES market size in 2021. This is projected to grow to 41.5% by 2026
  • BFSI sector (13.9%) saw the maximum analytics offering contribution compared to other sectors followed by Manufacturing, Retail & E-Commerce, Pharma & Healthcare, FMCG, Telecom, Media & Entertainment, Energy
  • Bengaluru (30.3%) is the top-most city in terms of analytics contribution followed by Delhi (26.2%), Mumbai (23.4%)
  • Analytics services – more than half (51.6%) of market share received from the U.S. Followed by U.K. (13.2%, Australia (8.3%), Canada (6.4%)
  • Among the analytics servicing companies, IT firms dominate the contribution at 43% with leading firms such as TCS, Accenture, Infosys, Cognizant, Wipro, IBM, Capgemini.

With respect to salary compensation, there are a few interesting points to note as well –

  • 41.5% of all the analytics professionals fall under the higher income level, greater than 10 Lakhs
  • Salary for an Analytics professional is 44% higher than that of a Software Engineer. This could be an attractive proposition for fresh or entry-level graduates to think analytics as a career option.
  • Data Engineers (14.9L per annum), Big Data Specialists (14.8L per annum) surpassed the median salary of AI/ML Engineers (14.6L per annum) by a narrow margin.
  • Python skill set saw the highest salary followed by SAS/R, QlikView/Tableau, PySpark/Hadoop

Here’s a break-down of the salary across different experience levels (Source: AIM). Due to several factors such as pandemic salary cuts, the salary during 2021 is slightly lesser than the previous year 2020.

Here’s a look across different industries and how they pay on an average –

Captive Centers, Consulting Firms pay higher than Domestic Firms (like Reliance), Boutique Analytics Firms, and IT Services

Hope this compilation of analytics industry outlook might give you some insights for you to focus and work towards your goals!

Credits: Analytics India Magazine (AIMResearch), Allied Market Research

What’s trending: Big Data vs Machine Learning vs Deep Learning?

If you’re new to Analytics, you might encounter too many topics to explore in this particular field starting from Reports, Dashboards, Business Intelligence to Data Visualization to Data Analytics, Big Data to AI, Machine Learning, Deep Learning. The list is incredibly overwhelming for a newbie to begin his/her journey.

I really wanted to rank and check which one is currently trending relative to each topic among these five buzzwords: “Business Intelligence”, “Data Analytics”, “Big Data”, “Machine Learning”, “Deep Learning”.

I made use of my favorite Google Trends tool for my reference purpose. I’m interested to assess based on the worldwide data for last 5 years using “Google” search engine queries as the prime source.

Analytics Trends 1
Analytics Trends 1

I inferred the following from the above user-searched data:

  1. Big Data stayed at the top of the users’ mind for quite long time since 2012. However, Machine Learning is soaring higher from 2015, and it could potentially overtake Big Data in a year as the “hottest” skill-set to have for any aspiring Analytics professional.
  2. Deep Learning is an emerging space! It would eventually gain more momentum in 1 year from now. It’s essential to gain the knowledge of Machine Learning concepts prior to learning about Deep Learning.
  3. Needless to say, Data Analytics field is also growing moderately. For beginners, this could be the best area to begin your journey.
  4. BI space is starting to lose out its focus among the users thanks to self-service BI portals (and automation of building reports/dashboards), Advanced Analytics.

 

I happened to see few additional interesting insights when I drilled it down at the industry-wise.

  1. Data analytics is still the hot topic for Internet & Telecom
  2. Big data for Health, Government, Finance, Sports, Travel to name a few
  3. BI for Business & Industrial
  4. Machine Learning for Science

 

Users interest by Region says that China is keen on Machine Learning field and Japan on Deep Learning. Overall, Big Data still spread all over the world as the hot-topic for time being. Based on the above graphs, it’s quite evident that Machine Learning would turn out to be the top-most skill set for any Analytics professional to have at his/her kitty.

You can go through this Forbes article to understand the differences between Machine Learning and Deep Learning at a high level.

Pls let me know what you think would be the hottest topic of interest in the Analytics spectrum.

Google Introduces Natural Language Queries In The Docs “Explore” Tool

Google Docs Explore feature was first introduced last year, and it aids us while drafting documents, spreadsheets, slides to a good extent. In this article, I’d like to share few stuffs around how to use Google docs “Explore” feature on a spreadsheet. It uses machine learning algorithm to understand the natural language based text queries and delivers the outcome instantly!

Isn’t it cool if you could just use natural language texting to understand the top, bottom and basic statistics in a matter of few seconds?! Needless to say, it also recommends us to refine the queries further 🙂

For illustration purpose, here’s a simple example:

I’ve created a sample data depicting the students’ scorecard. It comprises of student names, subjects and the corresponding scores. If you click on the headers and navigate to Explore option at the bottom-right corner of the Google Spreadsheet screen, it would pop-up and recommend us the queries that we might be interested in.

Google Doc Explore 1
Google Doc Explore 1

Some of the questions can be:

a) Top Score,

b) Least Score or Bottom Score,

c) Unique Subjects

d) Average of Score by Subject

e) Histogram of Score

f) Bar Chart of Average Score by Subject

You can start exploring the available fields using this way. I believe it can be a handy tool if you use Google spreadsheet for your projects. It also allows us to customize the generated formula as per below screenshot. The syntax looks pretty much like an SQL programming.

Google Doc Explore 2
Google Doc Explore 2

You can also make use of this feature as part of your exploratory data analyses. And here’s another classic example for you:

If you’re a teacher/head of the school, you would be surprised to see the below distribution Average Score vs. Subject. The tool provides us the insight that Physics has got the lowest score among other subjects. This is just the starting point to your analysis to go deeper into the data, and uncover the patterns. One of the key decisions from this inference could be to refine your education methodologies for ‘Physics’ subject.

Google Docs Explore 3
Google Docs Explore 3

Go ahead and explore the Google’s Explore feature and let me know how it helps you!

Credits:

Article’s cover page: http://alicekeeler.com/2016/09/30/google-docs-not-research-tool-explore/

Top Data Science Skills By Job Role

Do you have a fair idea about data science? I hope, yes. How about its skill-sets?

For newbies, Data Science is the field which is intersecting Statistics, Mathematics, Programming/Technology and Business. Using a combination of all these components, insights, models can be drawn using the data. It was a term coined in 2001 by a Professor of Statistics, William S. Cleveland at Purdue University.

I read at least 5 articles from the web today to understand the nuances of this role. Little did I know prior to my research that there are lot many things attached to the buzzword “Data Science”.

Broadly speaking, the skill-sets required to be a Data Scientist (as the way many companies call the folks who work in Data Science domain) fall under the following skills viz,

  1. Business
  2. Technology
  3. Math & Modelling
  4. Programming
  5. Statistics

We can even sub-classify them into further such as Programming – R, SAS, Python, SQL, NOSQL to name a few.

Business2Community features an article written by Bob Hayes. He came up with a questionnaire listing 25 data science skills, captured the responses, analyzed and ranked the top 10 skills from the results based on the proficiency level as “Intermediate” criterion.

25 Skills in the Data Science by AnalyticsWeek and BusinessBroadway
25 Skills in the Data Science by AnalyticsWeek and BusinessBroadway

Top 10 Data Science skills in general are:

  1. S – Communication (87% possess skill)
  2. T – Managing Structured data (75%)
  3. M – Math (71%)
  4. B – Project management (71%)
  5. S – Data Mining and Viz Tools (71%)
  6. S – Science/Scientific Method (65%)
  7. S – Data Management (65%)
  8. B – Product design and development (59%)
  9. S – Statistics and statistical modeling (59%)
  10. B – Business development (53%)

It’s interesting to note the fact that Communication stands first when compared to other skills! Catering either to internal or external customers, the data scientists talk to business functions such as Marketing, HR, Operations, Finance etc.I think it makes sense because what’s the point if one works hard at developing a model but not conveying the results as per the business needs. Guess what? “Data Presentation” has become one of the top 10 skills in 2016 published by LinkedIn.

Bob also charted out the top skill sets by job role level. This one is another interesting perspective.

 

Top Data Science Skills by Job Role from Business Broadway
Top Data Science Skills by Job Role from Business Broadway

Researcher can focus more on Statistics; Business Manager on communication, project management; Developer mostly on the programming aspects and so on.

With that said, it’s very tough to focus on learning all the skill-sets of a typical data scientist at a single stretch. Depends on who you want to become, the above list would be beneficial for you. Hence, you can prioritize and narrow down to the list and start learning one at a time! If you’re already good at Statistical concepts, try learning how to program the techniques using “R” programming language. This way, I think one can steadily adapt to the data science skill-sets.

Please remember that there’s no one size fits all approach! If your buddy is good at programming because of his formal educational background being from a software discipline and moving faster on a learning curve, that’s perfectly okay for you to keep up at your pace depending on your comfort level. At the core of data science, you can be really good at one skill-set and know the basics & become eventually to an intermediate level at another skill-sets.

My focus will be on statistics to begin with. What is yours right now?