Site icon CoffeeWithShiva – An Analytics Blog

LLM, RAG, AI Agent & Agentic AI – Explained Simply with Use Cases

As AI continues to dominate tech conversations, several buzzwords have emerged – LLM, RAG, AI Agent, and Agentic AI. But what do they really mean, and how are they transforming industries?

This article demystifies these concepts, explains how they’re connected, and showcases real-world applications in business.

1. What Is an LLM (Large Language Model)?

A Large Language Model (LLM) is an AI model trained on massive text datasets to understand and generate human-like language.

Think: ChatGPT, Claude, Gemini, or Meta’s LLaMA. These models can write emails, summarize reports, answer questions, translate languages, and more.

Key Applications:

2. What Is RAG (Retrieval-Augmented Generation)?

RAG is a technique that improves LLMs by giving them access to real-time or external data.

LLMs like GPT-4 are trained on data until a certain point in time. What if you want to ask about today’s stock price or use your company’s internal documents?

RAG = LLM + Search Engine + Brain.

It retrieves relevant data from a knowledge source (like a database or PDFs) and then lets the LLM use that data to generate better, factual answers.

Key Applications:

3. What Is an AI Agent?

An AI Agent is like an employee with a brain (LLM), memory (RAG), and hands (tools).

Unlike a chatbot that only replies, an AI Agent takes action—booking a meeting, updating a database, sending emails, placing orders, and more. It can follow multi-step logic to complete a task with minimal instructions.

Key Applications:

4. What Is Agentic AI?

Agentic AI is the next step in evolution. It refers to AI systems that show autonomy, memory, reflection, planning, and goal-setting – not just completing a single task but managing long-term objectives like a project manager.

While today’s AI agents follow rules, Agentic AI acts like a team member, learning from outcomes and adapting to achieve better results over time.

Key Applications:

Similarities & Differences

FeatureLLMRAGAI AgentAgentic AI
Generates text
Accesses external data❌ (alone)
Takes actions
Plans over timeBasic✅ (complex, reflective)
Has memory / feedback loopPartial✅ (adaptive)

I came across a simpler explanation written by Diwakar on LinkedIn –

Consider LLM → RAG → AI Agent → Agentic AI …… as 4 very different types of friends planning your weekend getaway:

📌 LLM Friend – The “ideas” guy.
Always full of random suggestions, but doesn’t know you at all.
“Bro, go skydiving!” (You’re scared of heights.)

📌 RAG Friend – Knows your tastes and history.
Pulls up better, fresher plans based on what you’ve enjoyed before.
“Bro, let’s go to Goa- last time you enjoyed a lot!”

📌 AI Agent Friend – The one who gets things done.
tickets? Done. Snacks? Done. Hotel? Done.
But you need to ask for each task (if you miss, he misses!)

📌 Agentic AI Friend – That Superman friend!
You just say “Yaar, is weekend masti karni hai”,
And boom! He surprises you with a perfectly planned trip, playlist, bookings, and even a cover story for your parents 😉

⚡ First two friends (LLM & RAG) = give ideas
⚡ Last two friends (AI Agent & Agentic AI) = execute them – with increasing level of autonomy

Here is an another visualization published by Brij explaining how these four layers relate – not as competing technologies, but as an evolving intelligence architecture –

Conclusion: Why This Matters to You

These aren’t just technical terms – they’re shaping the future of work and industry:

The future of work isn’t human vs. AI—it’s human + AI agents working smarter, together.

Exit mobile version